
Nickel – version 1.4
(ocamlwrap command-line tool)

http://nickel.x9c.fr

Copyright c© 2007-2010 Xavier Clerc – nickel@x9c.fr
Released under the GPL version 3

February 6, 2010

http://nickel.x9c.fr
mailto:nickel@x9c.fr

3

Contents

1 Introduction 5

2 Building Nickel 7

3 Running Nickel 9
3.1 Command-line version . 9
3.2 GUI version . 10
3.3 Ant task . 10

4 Compiling generated files 13

5 Generating bindings to classes 15
5.1 Meta elements . 15
5.2 Class declarations . 15
5.3 Field declarations . 17
5.4 Constructor declarations . 18
5.5 Method declarations . 18
5.6 Wrappers . 19
5.7 Exceptions . 19
5.8 Complete example . 20

6 Generating bindings to a database 25
6.1 Meta elements . 25
6.2 Prepared and unprepared statements . 26
6.3 Type mapping . 26
6.4 Command declarations . 28
6.5 Query declarations . 28
6.6 Complete example . 28

5

Chapter 1

Introduction

Classically, the Objective Caml1programmer that needed to interface its program with Java2

had to use O’Jacare. O’Jacare3 is a code generator that bridges Java and Objective Caml
objects. It does so by using a low level C interface and is built upon the camljava library4.

By using Cadmium (http://cadmium.x9c.fr) whether alone or with Cafesterol
(http://cafesterol.x9c.fr), it is possible to run an Objective Caml program on a
Java Virtual Machine. It is then particularly interesting to access Java classes from the Objec-
tive Caml program. This can be done in plain Cadmium by using the Cadmium runtime library
that allows access to Java reflection mechanism through modules Cadmium, and CadmiumObj.
However, when numerous Java elements need to be used, it is far more convenient to use Nickel
to generate bindings.

Since version 1.1, Nickel also allows to generate bindings to a database. Such bindings
allow to evaluate SQL statements by simply calling an Objective Caml function, the statement
execution being done through a JDBC5 driver. The generated bindings are type-safe, meaning
that the function signature is directly determined from the statement parameters and result.
This generator was inspired by the PGOCaml6 tool. Both tools share the same principle: the
signature of the functions is determined by connecting to the database at code-generation-time
in order to query the database for metadata.

Nickel is a bridge generator that produces Java, C and Objective Caml files. The Objective
Caml file defines the module providing access to Java elements and the Java file defines the
primitive provider with the supporting primitives. The C file provides a fake implemen-
tation of these primitives. Such a fake implementation is needed to allow compilation by
the ocamlc compiler (by fake, we mean that every primitive raises an exception upon invocation).

Nickel, in its 1.4 version, is designed to work with at least version 1.4 of Cadmium. Naturally,

1The official Caml website can be reached at http://caml.inria.fr and contains the full development suite
(compilers, tools, virtual machine, etc.) as well as links to third-party contributions.

2The official website for the Java Technology can be reached at http://java.sun.com.
3http://www.pps.jussieu.fr/~henry/ojacare
4The camljava library allows JNI access from Objective Caml and is available at http://pauillac.inria.fr/

~xleroy/software.html.
5http://java.sun.com/javase/technologies/database/
6http://developer.berlios.de/projects/pgocaml/

http://cadmium.x9c.fr
http://cafesterol.x9c.fr
http://caml.inria.fr
http://java.sun.com
http://www.pps.jussieu.fr/~henry/ojacare
http://pauillac.inria.fr/~xleroy/software.html
http://pauillac.inria.fr/~xleroy/software.html
http://java.sun.com/javase/technologies/database/
http://developer.berlios.de/projects/pgocaml/

1. INTRODUCTION 6

the use of Cadmium entails the use of Objective Caml (version 3.11.2 and above).

7

Chapter 2

Building Nickel

Nickel can be built from sources using Ant1 (at least version 1.7.1) under Java 1.6. Before
invoking Ant, one is advised to edit build.properties to parametrize Ant targets; properties
are not described here as they are self-explanatory. The target related to tests need both JUnit2

and Cobertura3 to be installed in the lib directory.
The following targets are available from the build.xml file:

all-tests performs all tests and generates coverage report

clean cleans ’classes’ and ’javadoc’ directories

clean-classes cleans ’classes’ directory

clean-javadoc cleans ’javadoc’ directory

clean-reports cleans ’reports’ directory

clean-tests cleans ’tests’ directory

compile compiles all files

compile-tests compiles and instruments all files

coverage generates coverage report

deploy compiles files then creates jar files

func-tests performs functional tests

javadoc generates javadoc

style generates style report

unit-tests performs unit tests

veryclean cleans all directories

1Apache Ant is a build tool, available at http://ant.apache.org.
2Java framework for unit tests, available at http://www.junit.org (tested with version 4.4).
3Java code coverage tool, available at http://cobertura.sourceforge.net (tested with version 1.9.1).

http://ant.apache.org
http://www.junit.org
http://cobertura.sourceforge.net

9

Chapter 3

Running Nickel

There are three ways Nickel can be used: as a command-line utility, as a GUI application,
or as an Ant task. The main class of the first version is fr.x9c.nickel.Main whereas the
main class of the second one is fr.x9c.nickel.MainGUI. It is also possible to launch the
first version by executing ocamlwrap.jar and the second one by executing ocamlwrap-gui.jar.

3.1 Command-line version

The command-line version accepts a list of xml files to process as well as the following switches:

--verbose or -verbose
print progress information during process

--debug or -debug
print debug information during process

--module-kind=<classes|database> or -module-kind <classes|database>
kind of module to produce (defaulting to ”classes”)

--version or -version
show program version and exit

--help or -help
show this message and exit

--java-dir=<directory> or -java-dir <directory>
directory for generated Java files (defaulting to ”.”)

--java-package=<package-name> or -java-package <package-name>
package of generated Java files (defaulting to ”pack”)

--ocaml-dir=<directory> or -ocaml-dir <directory>
directory for generated OCaml files (defaulting to ”.”)

--c-dir=<directory> or -c-dir <directory>
directory for generated C files (defaulting to ”.”)

3. RUNNING NICKEL 10

--primitive-prefix=<string> or -primitive-prefix <string>
prefix to primitive names (defaulting to ””)

--no-c-file or -no-c-file
disable C file generation

--generics or -generics
enable support for generics (experimental)

The command-line version returns an exit code of 0 when successful, and an exit code of 1
otherwise.

3.2 GUI version

The GUI version accepts the same command-line switches as the command-line version and then
opens a dialog to allow the user to modify the following elements:

• the directory for generated Java files;

• the package of generated Java files;

• the directory for generated Objective Caml files;

• the directory for generated C files;

• the prefix to primitive names;

• the kind of module to generate;

• the XML file to process.

3.3 Ant task

To be used in an Ant build file, the task should first be declared using a <taskdef element as
shown by code sample 1. The Ant task can then be used as shown by code sample 2: it waits for
an embedded <fileset element describing the XML files to process and supports the following
attributes:

verbose whether execution should be verbose (boolean defaulting to false);

debug whether debug information should be printed (boolean defaulting to false);

javadir directory for generated Java files (directory defaulting to project base directory);

javapackage package for generated Java files (mandatory, no default value);

ocamldir directory for generated Objective Caml files (directory defaulting to project base
directory);

cdir directory for generated C files (directory defaulting to project base directory);

prefix prefix to primitive names (string defaulting to the empty string);

modulekind kind of module to generate (string defaulting to “classes”).

11 Ant task

Code sample 1 Ant file (task definition).

<path id="cp">
<pathelement location="/path/to/ocamlwrap.jar"/>

</path>

<taskdef name="nickel" classname="fr.x9c.nickel.AntTask" classpathref="cp"/>

Code sample 2 Ant file (task use).

<target name="mytarget">
<nickel javapackage="mypackage">
<fileset dir=".">

<include name="mymodule.xml"/>
</fileset>

</nickel>
</target>

13

Chapter 4

Compiling generated files

Upon successful invocation, Nickel produces for each passed XML file:

• an Objective Caml module providing functions and classes to access Java elements;

• a Java class that is a primitive provider;

• a C file that contains fake implementations (i. e. always raising an exception) for primi-
tives.

Any C compiler can be used to compile the C file. One has only to pass the compiler the
path of Objective Caml C header files (/usr/local/lib/ocaml/caml under usual Unix-like
configuration). This means that the gcc1 command-line to compile a generated file.c is:

gcc -I /usr/local/lib/ocaml/caml -c file.c

However, it is simpler to just invoke ocamlc to compile the C file. It will automatically called
the C compiler chosen at Objective Caml configuration. It nevertheless remains necessary to
pass the path of Objective Caml header files:

ocamlc -ccopt -I -ccopt /usr/local/lib/ocaml/caml -c file.c

Any Java 1.6 compiler can be used to compile the Java file. One has only to pass the compiler
the path of the Cadmium jar file (as well as the classpath of any wrapped class outside the JDK,
if any). This means that, using javac2, the command-line to compile a generated File.java is:

javac -target 1.6 -cp /path/to/ocamlrun.jar File.java

To use the generated Objective Caml module, one first needs to generate its interface. It can
be done using the following command-line (it needs Cadmium to be installed in the Objective
Caml distribution):

ocamlc -I +cadmium -i file.ml > file.mli

Then, to be used with Cadmium as an interpreter, both (mli and ml) files can be compiled using
the following commands:

ocamlc -I +cadmium -c file.mli
ocamlc -I +cadmium -c file.ml

1GNU Compiler Collection – http://gcc.gnu.org.
2Java compiler, bundled with Sun JDK – http://java.sun.com.

http://gcc.gnu.org
http://java.sun.com

4. COMPILING GENERATED FILES 14

Finally, the main program can be compiled and linked by the following command (where
source.ml contains the source of the main program, and file.o has been compiled from
file.c):

ocamlc -I +cadmium -o prog -custom cadmiumLibrary.cma file.o file.cmo source.ml

Alternatively, if one wants to use the Cafesterol (i.e. ocamljava) compiler, the commands
become (where cp is the classpath to access to the Java class compiled from compiled File.java,
and fqcn its fully-qualified classname):

ocamljava -I +cadmium -c file.mli
ocamljava -classpath <cp> -provider <fqcn> -I +cadmium -c file.ml

ocamljava -o prog.jar -I +cadmium cadmiumLibrary.cmja file.cmj source.ml

15

Chapter 5

Generating bindings to classes

This chapter presents the generator allowing to produce bindings to Java classes. The full DTD
of input files is given by code sample 3. The associated semantics is given below. Each XML
file represents an Objective Caml module and acts as a collection of class bindings between
Java and Objective Caml. For each class in the XML file, the Java class name is given as well
as the name of the corresponding Objective Caml class to generate.

5.1 Meta elements

Meta tags are key-value pairs that give information on how the contents of the XML file should
be interpreted. In the current version, only one meta key is recognized: CLASSPATH. It can be
used to specify the classpath to be used when trying to load Java classes in order to produce
bindings. Java classes will be found if and only if they appear either in the classpath of the
Nickel process, or in an element pointed by a meta CLASSPATH element.

5.2 Class declarations

A Nickel XML files begins by optional external definitions. Such definitions are useful if
some bindings defined in another XML file should be used in the current file. Each external
declaration defines such a binding between a Java class (fully qualified name given by java-name
attribute) and an Objective Caml class (name with module prefix given by ocaml-name). The
definition of external bindings is useful because of the way Nickel produces bindings. When
creating a binding for a method, constructor or field, Nickel must determine its related types
(for parameters, return values, etc.); for each element, the chosen type is the most specific type
Nickel knows. This means that if an element type is a class that is not defined in the current
XML file, Nickel will use its closest parent, possibly java.lang.Object1. It is thus important
to provide external definitions (if available) to ensure that bindings are as close as possible
to the Java underlying hierarchy. Table 5.1 gives the mapping of primitive types (conversion
between Objective Caml char and int resulting from Java char are done by char of java char
and java char of char in either Cadmium or CadmiumObj module).

1java.lang.Object is always used for generic types, and type parameters should not be given (which means
that one should write java.util.List rather than java.util.List<T>).

5. GENERATING BINDINGS TO CLASSES 16

Code sample 3 DTD for XML files.

<!ELEMENT module (meta*,external*,(class|interface|enum)*)>
<!ATTLIST module name CDATA #REQUIRED>

<!ELEMENT meta EMPTY>
<!ATTLIST meta name CDATA #REQUIRED>
<!ATTLIST meta value CDATA #REQUIRED>

<!ELEMENT external EMPTY>
<!ATTLIST external java-name CDATA #REQUIRED>
<!ATTLIST external ocaml-name CDATA #REQUIRED>

<!ELEMENT class ((field|fields)*,(constructor|constructors)*,(method|methods)*)>
<!ATTLIST class java-name CDATA #REQUIRED>
<!ATTLIST class ocaml-name CDATA #REQUIRED>
<!ATTLIST class wrapper (yes|no) "no">

<!ELEMENT interface ((field|fields)*,(method|methods)*)>
<!ATTLIST interface java-name CDATA #REQUIRED>
<!ATTLIST interface ocaml-name CDATA #REQUIRED>
<!ATTLIST interface wrapper (yes|no) "no">

<!ELEMENT enum ((field|fields)*,(method|methods)*)>
<!ATTLIST enum java-name CDATA #REQUIRED>
<!ATTLIST enum ocaml-name CDATA #REQUIRED>

<!ELEMENT field EMPTY>
<!ATTLIST field name CDATA #REQUIRED>

<!ELEMENT fields EMPTY>
<!ATTLIST fields pattern CDATA #REQUIRED>

<!ELEMENT constructor EMPTY>
<!ATTLIST constructor signature CDATA #REQUIRED>

<!ELEMENT constructors EMPTY>
<!ATTLIST constructors pattern CDATA #REQUIRED>

<!ELEMENT method EMPTY>
<!ATTLIST method signature CDATA #REQUIRED>

<!ELEMENT methods EMPTY>
<!ATTLIST methods pattern CDATA #REQUIRED>

17 Field declarations

Java type Nickel-mapped Objective Caml type
boolean bool

java.lang.Boolean bool
byte int

java.lang.Byte int
char int

java.lang.Character int
double float

java.lang.Double float
float float

java.lang.Float float
int int32

java.lang.Integer int32
long int64

java.lang.Long int64
short int

java.lang.Short int
java.lang.String string

void unit
java.lang.Void unit

Table 5.1: Mapping of Java primitive types.

After external elements, the XML file consists of a list of class, interface and enum
elements. Each of theses elements defines a mapping from a Java class (whose fully qualified
name is given by attribute java-name) to an Objective Caml class (whose name is given by
attribute ocaml-name). class elements may contain field, constructor and methods elements
while interface and enum elements may only contain field and method elements.

5.3 Field declarations

Field elements can be declared either by a field or a fields tag. The first tag accepts a name
attribute while the second one accepts a pattern attribute. A field tag is used to map the
single field whose name is given; a fields tag is used to map a set of fields whose name pattern
is given. Table 5.2 presents the meta-characters that can be used in a pattern.

Meta-character Semantics
* matches 0 or more characters
+ matches 1 or more characters
? matches 0 or more characters (excluding ,)
! matches 1 or more characters (excluding ,)

Table 5.2: Meta-characters to be used in patterns.

5. GENERATING BINDINGS TO CLASSES 18

As an example, if myField is a field of type t in the concerned class,
<field name="myField"/> generates the following:

• method field’myField’get : t to read the field value;

• method field’myField’set : t -> unit to change the field value, generated only if
myField is not final.

These methods are generated independently of the static nature of the field. When related to a
static field, methods can be called on any instance, even a null one.

5.4 Constructor declarations

Constructor elements can be declared either by a constructor or a constructors tag. The
first tag accepts a signature attribute while the second one accepts a pattern attribute.
A constructor tag is used to map the single constructor whose signature is given; a
constructors tag is used to map a set of constructors whose signature pattern is given. A
constructor signature has the following format: (params) where params is a comma-separated
list of parameters (no whitespace is allowed). This means that the (*) pattern matches all
constructors. Parameters are either fully qualified class names or primitives names, a trailing
[] bracket couple being used for each array dimension.

As an example, if the concerned class contains a constructor taking a string and an integer as
parameters, <constructor signature="(java.lang.String,int)"/> generates the following:

• ‘StringInt of string * int32 polymorphic variant, name being the concatenation of
the Java types

Afterwards, an instance can be created by: new myClass (‘StringInt ("a", 5l)) (warning:
the integer value is 5 with an ending ell, as it is an int32 value).

A Java enum class cannot specify any constructor but for each enum value V of the enum,
a polymorphic variant ‘V is generated.

5.5 Method declarations

Method elements can be declared either by a method or a methods tag. The first tag accepts
a signature attribute while the second one accepts a pattern attribute. A method tag is
used to map the single method whose signature is given; a methods tag is used to map a set
of methods whose signature pattern is given. A method signature has the following format:
name(params) where params is a comma-separated list of parameters. This means that the
() pattern matches all methods.

As an example, if the concerned class contains a method meth taking a string and an integer
as paramaters and returning a float, <method signature="meth(java.lang.String,int)"/>
generates the following:

• method meth : string -> int32 -> float

19 Wrappers

Afterwards, the method can be called on an instance named inst by: inst#meth "a" 5l. This
method is generated independently of the static nature of the Java method. When related to
a static Java method, the Objective Caml method can be called on any instance, even a null one.

In case of name clash (due to either Java method overloading, or clash with an Objective
Caml keyword), the method name is appended with first ’1, then ’2, and so on.

5.6 Wrappers

When binding a Java class or interface, the user may require Nickel to generate a wrapper by
setting the wrapper property to yes (this attribute is optional and its default value is no).
A wrapper is a Java class that wraps an Objective Caml instance to allow this instance to be
used by others Java classes. It is useful as it allows to implement in Objective Caml a listener
to be registered with a Java instance. The last part of this document presents an example
where a java.awt.event.ActionListener is written in Objective Caml and added to the listeners
of a javax.swing.JButton instance.

When a wrapper is requested for a Java class or instance, Nickel generates the following:

• ‘Cd’wrap of < m1: p1 -> r1; m2: p2 -> p2’ -> r2; ..> polymorphic variant where
mi are methods with their pi parameter types and ri return types.
If wrapping is done around an interface the ‘Cd’wrap variant is generated; if wrapping
is done around a class, a variant is generated for each constructor matched by either a
constructor or a constructors tag.
The methods are all the methods matched by method and methods tags of the related
class or interface.

Afterwards, a wrapped instance can be created by: new myClass (‘Cd’wrap inst) where inst
is an Objective Caml instance providing mi methods with compatible parameter and return
types.

5.7 Exceptions

When a an Objective Caml program is ran under Cadmium, any Java exception can be caught
on the Cadmium side by using the Cadmium.java_exception exception. Such an Objective
Caml exception, takes 3 parameters that are:

• the fully qualified class name of the exception (as a string);

• the exception message (as a string);

• the actual exception instance (as a Cadmium.java_object).

To throw a Java exception from the Objective Caml side (useful in wrapped code), the
programmer can use either Cadmium.throw_exception or CadmiumObj.throw_exception func-
tion that respectively take a Cadmium.java_object and a CadmiumObj.jObject and return
unit (both function raise Invalid_argument when passed a Java instance that is not a
java.lang.Throwable one). It is of course possible to bind a Java exception using a class tag to
allow easy construction of such an exception from the Objective Caml side; then the exception
is thrown by Cadmium.throw_exception (inst#cd’this) or CadmiumObj.throw_exception
(inst :> CadmiumObj.jObject) where inst is an instance of a Java exception.

5. GENERATING BINDINGS TO CLASSES 20

5.8 Complete example

This section shows how to use Nickel in conjunction with Cadmium/Cafesterol to write in
Objective Caml a small Java Swing application. This application will have a text area and a
button and will exit upon button click by printing the contents of the text area.

Code sample 4 shows the makefile used by this example when using Cadmium as an
interpreter. The prepare target first invokes Nickel to generate C, Java and Objective Caml
files and then produces the Objective Caml module interface from its implementation source.
The compile target first compiles module interface and implementation, then compiles the
generated C and Java files, finally the complete Objective Caml program is compiled and linked.
The run target runs the compiled Objective Caml program under Cadmium (if not run under
Cadmium, the program fails upon an Objective Caml exception exhibiting that Cadmium is
missing and required).

Code sample 4 Makefile for example.

JAVA=java
JAVAC=javac
OCAMLC=ocamlc -I +cadmium
CADMIUM_JAR=../../../Cadmium/deploy/ocamlrun.jar
CADMIUM_MAIN=fr.x9c.cadmium.Main
NICKEL_JAR=../../deploy/ocamlwrap.jar

all: clean prepare compile run

prepare:
mkdir pack
$(JAVA) -jar $(NICKEL_JAR) --java-dir=pack source.xml
$(OCAMLC) -i java.ml > java.mli

compile:
$(OCAMLC) -c java.mli
$(OCAMLC) -c java.ml
$(OCAMLC) -ccopt -I -ccopt /usr/local/lib/ocaml/caml -c java.c
$(JAVAC) -target 1.6 -cp $(CADMIUM_JAR) pack/Java.java
$(OCAMLC) -o prog -custom cadmiumLibrary.cma java.o java.cmo source.ml

run:
$(JAVA) -cp .:$(CADMIUM_JAR) $(CADMIUM_MAIN) --providers=pack.Java ./prog

clean:
rm -f java.c java.ml java.mli pack/Java.java
rm -f *.cm* *.o prog pack/*.class
rm -fr pack

21 Complete example

Code sample 5 shows the makefile used by this example when using Cadmium with the
Cafesterol compiler (i.e. ocamljava). The prepare target first invokes Nickel to generates C,
Java and Objective Caml files and then produces the Objective Caml module interface from its
source; finally the generated Java file is compiled. The compile target first compiles module
interface and implementation, then compiles the main module and links both modules. The
run target runs the compiled Objective Caml program using compiled libraries.

Code sample 5 Makefile.cafesterol for example.

JAVA=java
JAVAC=javac
JAR=jar
OCAMLJAVA=ocamljava -I +cadmium -java-package fr.x9c.nickel.example
CADMIUM_JAR=../../../Cadmium/deploy/ocamlrun.jar
NICKEL_JAR=../../deploy/ocamlwrap.jar
LIB_DIR=‘ocamljava -where‘
LIBS=$(LIB_DIR)/stdlib.jar:$(LIB_DIR)/cadmium/cadmiumLibrary.jar

all: clean prepare compile run

prepare:
mkdir pack
$(JAVA) -jar $(NICKEL_JAR) --java-dir=pack --java-package=pack source.xml
$(OCAMLJAVA) -i java.ml > java.mli
$(JAVAC) -target 1.6 -cp $(CADMIUM_JAR) pack/Java.java

compile:
$(OCAMLJAVA) -c java.mli
$(OCAMLJAVA) -classpath . -provider pack.Java -c java.ml
$(OCAMLJAVA) -c source.ml
$(OCAMLJAVA) -o prog.jar -standalone cadmiumLibrary.cmja java.cmj source.cmj
$(JAR) uf prog.jar pack/*

run:
$(JAVA) -jar prog.jar

clean:
rm -f java.c java.ml java.mli pack/Java.java
rm -f *.cm* *.j* prog.jar pack/*.class
rm -fr pack

Code sample 6 shows the Objective Caml source of the program. The opened Java
module is the module generated by Nickel. The lock object is used to handle the end of the
program: the main code waits upon this object and the actionPerformed method notifies
this instance. The main code constructs the frame, text area (wrapped in a scroll pane)
and the button. Then an action listener is constructed by wrapping an instance of the quit

5. GENERATING BINDINGS TO CLASSES 22

class. Finally, the user interface is created and made visible, a wait is issued on the lock
object, and upon notification the final contents of the text area is printed on the standard output.

Code sample 6 Objective Caml source for example.

open CadmiumObj
open Java

let lock = new jObject ‘Void

class quit = object
method actionPerformed (_ : jObject) = lock#notify

end

let () =
let frame = new jFrame (‘String "Nickel test") in
let text = new jTextArea (‘String ("This is a Nickel/Cadmium example.\n"

^ "One can input text in this area.")) in
let view = new jScrollPane (‘Component (text :> jComponent)) in
let button = new jButton (‘String "OK") in
let listener = new jActionListener (‘Cd’wrap (new quit)) in
button#addActionListener listener;
ignore (frame#getContentPane#add "Center" (view :> jComponent));
ignore (frame#getContentPane#add "South" (button :> jComponent));
frame#setSize 320l 240l;
frame#setVisible true;
lock#wait;
print_endline "*** final text:";
print_endline text#getText;
exit 0

Code sample 7 shows the XML file used to generate C, Java and Objective Caml files.

As a concluding remark, we want to draw the reader’s attention on the fact that Swing user
interfaces can be created more easily by using SwiXml and its associated Cadmium bindings.
SwiXml is a powerful and very convenient library that allows one to render a GUI from an XML
description (available at http://www.swixml.org). The corresponding Cadmium bindings are
part of Cadmium since version 1.1.

http://www.swixml.org

23 Complete example

Code sample 7 Nickel file for example.

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE module SYSTEM "dtds/module.dtd">

<module name="Java">
<interface java-name="java.awt.event.ActionListener"

ocaml-name="jActionListener"
wrapper="yes">

<methods pattern="*(*)"/>
</interface>
<class java-name="javax.swing.JButton" ocaml-name="jButton">

<constructor signature="(java.lang.String)"/>
<method signature="addActionListener(java.awt.event.ActionListener)"/>

</class>
<class java-name="javax.swing.JFrame" ocaml-name="jFrame">

<constructor signature="(java.lang.String)"/>
<method signature="getContentPane()"/>
<method signature="setSize(int,int)"/>
<method signature="setVisible(boolean)"/>

</class>
<class java-name="javax.swing.JTextArea" ocaml-name="jTextArea">

<constructor signature="(java.lang.String)"/>
<method signature="getText()"/>

</class>
<class java-name="javax.swing.JScrollPane" ocaml-name="jScrollPane">

<constructor signature="(java.awt.Component)"/>
</class>
<class java-name="java.awt.Component" ocaml-name="jComponent"/>
<class java-name="java.awt.Container" ocaml-name="jContainer">

<method signature="add(java.lang.String,java.awt.Component)"/>
</class>

</module>

25

Chapter 6

Generating bindings to a database

This chapter presents the generator allowing to produce bindings to databases through JDBC
drivers. The full DTD of input files is given by code sample 8. The associated semantics is given
below. Each XML file represents an Objective Caml module and acts as a collection of SQL
statements that can be executed to either query or modify the database. There are indeed two
kinds of SQL statements: commands are SQL statements that modifiy the database and return
no result, while queries are SQL statements that return a result set.

Code sample 8 DTD for XML files.

<!ELEMENT dbmodule (meta*,(command|query)*)>
<!ATTLIST dbmodule name CDATA #REQUIRED>

<!ELEMENT meta EMPTY>
<!ATTLIST meta name CDATA #REQUIRED>
<!ATTLIST meta value CDATA #REQUIRED>

<!ELEMENT command EMPTY>
<!ATTLIST command name CDATA #REQUIRED>
<!ATTLIST command code CDATA #REQUIRED>
<!ATTLIST command prepare (yes|no) "yes">

<!ELEMENT query EMPTY>
<!ATTLIST query name CDATA #REQUIRED>
<!ATTLIST query code CDATA #REQUIRED>
<!ATTLIST query prepare (yes|no) "yes">
<!ATTLIST query updatable (yes|no) "no">

6.1 Meta elements

Meta tags are key-value pairs that give information on how the XML file should be interpreted.
In the current version, the following meta keys are recognized: CLASSPATH, DRIVER, URL, USER,
and PASSWORD.

6. GENERATING BINDINGS TO A DATABASE 26

The CLASSPATH meta has the same meaning than in the classes generator. It allows to
specify the classpath to be used when trying to connect to the database. It is hence used
mainly to ensure that the JDBC driver to be used can be reached by Nickel. The DRIVER meta
is used to give the fully-qualified classname of the JDBC driver.

The URL, USER, and PASSWORD meta elements are used to set respectively the database
URL, as well as the login/password to be used for database connection. At the opposite of the
CLASSPATH and DRIVER elements, the URL, USER, and PASSSWORD elements cannot be defined
more than once. Finally, the USER and PASSWORD elements are optional as there could be no
authentification needed for a given database.

It is important to keep in mind that all these meta elements are used at compile-time and
are not recorded in any way to be used at run-time. It is hence regular to use different urls
or users to connect at these different times. However, the database should obviously share the
same schema to ensure that metadata gathered at compile-time is coherent with the run-time
environment.

6.2 Prepared and unprepared statements

Both commands and queries accept an attribute prepare indicating whether the statement can
be used in prepared mode. The prepared mode allows to leverage the power of JDBC prepared
statements. For prepared statements to be used, it is necessary to define a connection to the
database. To this end, each generated module will provide the three following functions:

• connect : string -> string option -> string option -> unit connects to the
database, the parameters being database url and login/password (both being optional)

• disconnect : unit -> unit disconnect from the database

• is_connected : unit -> bool tests whether the connection to the database has been
established

These functions define the connection to be used by the prepared mode for the given module.
This means that multiple database Nickel-generated modules may coexist happily in the same
application but will not share connection information.

The functions and classes generated to execute a prepared statement all accept as their
first parameter a CadmiumJDBC.Connection.t option value that defines how to connect to the
database. If None is passed, the module connection depicted above is used. Otherwise, the
specified connection is used. This scheme allows to leverage the power of prepared statement
while still allowing to use a specific connection for the same statement.

The functions and classes generated to execute an unprepared statement accept a
CadmiumJDBC.Connection.t value, which means that they cannot take advantage of the con-
nection handled at the module level.

6.3 Type mapping

The first parameter accepted by generated functions and classes has been defined in the previous
section. The other parameters are determined by the actual SQL statement to be executed. As
defined by the JDBC standard, the SQL statement can contain some ? characters that are used

27 Type mapping

as parameter placeholders. For each of these question marks, the user will have to provide a value
at runtime in order to actually execute the statement. As a consequence, each question mark
will result in an additional parameter to the function that will be generated for the execution
of the statement. If the parameter can be a SQL null value then it will be represented by an
Objective Caml option value. Table 6.1 gives the mapping from SQL types to Objective Caml
types.

SQL type Nickel-mapped Objective Caml type
ARRAY Cadmium.java object
BIGINT int64
BINARY string

BIT bool
BLOB CadmiumJDBC.Blob.t

BOOLEAN bool
CHAR string
CLOB CadmiumJDBC.Clob.t

DATALINK string
DATE CadmiumJDBC.Date.t

DECIMAL CadmiumMath.BigDecimal.t
DOUBLE float
FLOAT float

INTEGER int32
LONGNVARCHAR string
LONGVARBINARY string
LONGVARCHAR string

NCHAR string
NCLOB CadmiumJDBC.NClob.t

NUMERIC CadmiumMath.BigDecimal.t
NVARCHAR string

REAL float
REF CadmiumJDBC.Ref.t

ROWID CadmiumJDBC.RowId.t
SMALLINT int
SQLXML CadmiumJDBC.SQLXML.t
STRUCT Cadmium.java object

TIME CadmiumJDBC.Time.t
TIMESTAMP CadmiumJDBC.Timestamp.t

TINYINT int
VARBINARY string
VARCHAR string

Table 6.1: Mapping of SQL types.

6. GENERATING BINDINGS TO A DATABASE 28

6.4 Command declarations

Command tags accept three attributes: name, code, and prepare. The name attribute gives the
name of the function to be generated while the code attribute contains the actual SQL code to
be executed. Finally, prepare can be either yes or no to indicate whether the command may
be used as a prepared statement. The functions generated for commands have a return type
equal to int32. The returned value will indicate the number of rows impacted by the command
execution.

6.5 Query declarations

Query tags accept four attributes: name, code, prepare, and updatable. The three first at-
tributes have the very same meaning as for command tags. The functions generated for queries
have a return type equal to CadmiumJDBC.ResultSet.t. Additionally, for each generated func-
tion, a class with the same name and parameters is also defined. This class defines an iterator
that can be used to iterate over the values of the result set. The following methods are provided:

• next -> t where t is a tuple type corresponding to the columns of the result set (each
nullable column being translated into an option type), raises Not_found when all tuples
have already been returned

• close : unit closes the underlying result set

The updatable attribute indicates whether the aforementioned class should also provide
methods allowing to modify the current row of the result set. When created, the iterator is
positioned before its first element, which means that next should be called before any update
could be made.

The CadmiumJDBC.Iterators module contains functions designed to work with the generated
classes: various flavours of map, iter, and fold are provided. It is also possible to convert an
iterator instance into a bare list.

6.6 Complete example

This section shows how to use Nickel in conjunction with Cadmium/Cafesterol to write in
Objective Caml a small JDBC-based application. This application will iterate over the elements
of a given table, and modify some of them. The example is based on Derby1.

Code sample 9 shows the makefile used by this example when using Cadmium as an
interpreter. The startup target starts the database and creates a table with some values. The
contents of both start-database.sh and execute-database.sh are specific to the database
actually used; the first one should launch the database service while the second one should only
log to this service in order to evaluate the passed SQL script (which is represented by code
sample 10). At the other end, the shutdown target first drops the table contents (by executing
the drop.sql script reproduced by code sample 11), and then stops the database service by
executing the shutdown-database.sh shell script.

1Java database, available at http://db.apache.org/derby/ (tested with version 10.4.1.3).

http://db.apache.org/derby/

29 Complete example

Besides these enclosing targets, the prepare target first invokes Nickel to generate C,
Java, and Objective Caml files and then produces the Objective Caml module interface
from its implementation source. The compile target first compiles module interface and
implementation, then compiles the generated C and Java files, finally the complete Objective
Caml program is compiled and linked. The run target runs the compiled Objective Caml under
Cadmium (if not run under Cadmium, the program fails upon an Objective Caml exception
exhibiting that Cadmium is missing and required).

Code sample 12 shows the makefile used by this example when using Cadmium with the
Cafesterol compiler (i.e. ocamljava). The prepare target first invokes Nickel to generates C,
Java and Objective Caml files and then produces the Objective Caml module interface from its
source; finally the generated Java file is compiled. The compile target first compiles module
interface and implementation, then compiles the main module and links both modules. The
run target runs the compiled Objective Caml program using compiled libraries. The other
targets are identical to their counterpart from the Cadmium-only makefile.

Code sample 7 shows the XML file used to generate C, Java and Objective Caml files. The
<dbmodule tag first defines the name of the module to generate. Then <meta tags are used to
specify the classpath, the JDBC driver, and the database URL to be used at module generation
time. Finally, three SQL statements are defined:

• a command named insert that takes fives parameters and inserts the associated values
into the PEOPLE table;

• a query named get people that takes no parameter and will iterate over the whole table;

• a query named get people with mail that takes no parameter and will iterate over the
table element whose MAIL column is not NULL.

All three statements are prepared, in order to be able to call them without explicitly providing
a connection instance. The first of the two queries is also made updatable to be able to modify
the table contents while iterating over it.

Code sample 14 shows the Objective Caml source of the program. The driver and url
global variables respectively define the JDBC driver to be used and the URL of the database
to log to. The print people uses the iter close function of the CadmiumJDBC.Iterators
module to iterate over the passed object and closes the result set associated with the passed
object. It is important to notice that the tuples that are iterated over have their type determined
by the database schema. In this case the tuple is composed of five elements: three strings,
an int32 option, and a string option. The first three elements are simple types while the
last two are option types because the first three elements of the PEOPLE table are declared
NOT NULL while the others are not (cf. code sample 10 for the details about the table declaration).

The main code first ensures that the driver is loaded (by calling Cadmium.Class.for name),
and creates the connection for statements execution (by calling Database.connect). Then
get people and get people with mail classes from the Database module are executed to get
objects instance to iterate over; None is passed for the creation of both objects in order to use the
implicit connection set by the call to Database.connect function. After that, a new get people
instance is created to iterate over the table and change the NULL values of the MAIL column to
some dummy values. Finally, a new element is added to the table through the Database.insert

6. GENERATING BINDINGS TO A DATABASE 30

Code sample 9 Makefile for example.

JAVA=java
JAVAC=javac
OCAMLC=ocamlc -I +cadmium
CADMIUM_JAR=../../../Cadmium/deploy/ocamlrun.jar
CADMIUM_MAIN=fr.x9c.cadmium.Main
NICKEL_JAR=../../deploy/ocamlwrap.jar
DATABASE_JAR=path-to-derby/derbyclient.jar

all: clean startup prepare compile run shutdown

startup:
./start-database.sh
./execute-database.sh create.sql

prepare:
mkdir pack
$(JAVA) -jar $(NICKEL_JAR) --java-dir=pack --module-kind=database source.xml
$(OCAMLC) -i database.ml > database.mli

compile:
$(OCAMLC) -c database.mli
$(OCAMLC) -c database.ml
$(OCAMLC) -ccopt -I -ccopt /usr/local/lib/ocaml/caml -c database.c
$(JAVAC) -target 1.6 -cp $(CADMIUM_JAR) pack/Database.java
$(OCAMLC) -o prog -custom cadmiumLibrary.cma database.o database.cmo source.ml

run:
$(JAVA) -cp .:$(CADMIUM_JAR):$(DATABASE_JAR) $(CADMIUM_MAIN) --providers=pack.Database ./prog

shutdown:
./execute-database.sh drop.sql
./shutdown-database.sh

clean:
rm -f database.c database.ml database.mli pack/Database.java
rm -f *.cm* *.o prog pack/*.class
rm -f *.log
rm -fr nickel
rm -fr pack

31 Complete example

Code sample 10 Creation of database table (create.sql file).

CONNECT ’jdbc:derby://localhost:1527/nickel;create=true’;

CREATE TABLE PEOPLE (
ID VARCHAR(32) NOT NULL PRIMARY KEY,
FIRST_NAME VARCHAR(32) NOT NULL,
LAST_NAME VARCHAR(32) NOT NULL,
AGE INTEGER,
MAIL VARCHAR(64)

);

INSERT INTO PEOPLE VALUES
(’JS’, ’John’, ’Smith’, 35, NULL),
(’JoD’, ’John’, ’Doe’, NULL, NULL),
(’JaD’, ’Jane’, ’Doe’, NULL, NULL),
(’AS’, ’Alan’, ’Smithee’, 40, ’alan.smithee@movies.org’);

exit;

Code sample 11 Destruction of database table (drop.sql file).

CONNECT ’jdbc:derby://localhost:1527/nickel’;

DROP TABLE PEOPLE;

exit;

6. GENERATING BINDINGS TO A DATABASE 32

Code sample 12 Makefile.cafesterol for example.

JAVA=java
JAVAC=javac
OCAMLJAVA=ocamljava -I +cadmium -java-package fr.x9c.nickel.dbexample
CADMIUM_JAR=../../../Cadmium/deploy/ocamlrun.jar
NICKEL_JAR=../../deploy/ocamlwrap.jar
DATABASE_JAR=path-to-derby/derbyclient.jar

all: clean startup prepare compile run shutdown

startup:
./start-database.sh
./execute-database.sh create.sql

prepare:
mkdir pack
$(JAVA) -jar $(NICKEL_JAR) --java-dir=pack --module-kind=database source.xml
$(OCAMLJAVA) -i database.ml > database.mli
$(JAVAC) -target 1.6 -cp $(CADMIUM_JAR) pack/Database.java

compile:
$(OCAMLJAVA) -c database.mli
$(OCAMLJAVA) -classpath . -provider pack.Database -c database.ml
$(OCAMLJAVA) -o prog.jar -standalone -classpath . -provider pack.Database cadmiumLibrary.cmja database.cmj source.ml -additional-jar $(DATABASE_JAR) -additional-class pack/Database.class

run:
$(JAVA) -jar prog.jar

shutdown:
./execute-database.sh drop.sql
./shutdown-database.sh

clean:
rm -f database.c database.ml database.mli pack/Database.java
rm -f *.cm* *.j* prog.jar pack/*.class
rm -f *.log
rm -fr nickel
rm -fr pack

33 Complete example

Code sample 13 Nickel file for example.

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE dbmodule SYSTEM "dtds/dbmodule.dtd">

<dbmodule name="Database">

<meta name="CLASSPATH" value="path-to-derby/derbyclient.jar"/>
<meta name="DRIVER" value="org.apache.derby.jdbc.ClientDriver"/>
<meta name="URL" value="jdbc:derby://localhost:1527/nickel"/>

<command name="insert"
code="INSERT INTO PEOPLE VALUES (?, ?, ?, ?, ?)"
prepare="yes"/>

<query name="get_people"
code="SELECT * FROM PEOPLE"
prepare="yes"
updatable="yes"/>

<query name="get_people_with_mail"
code="SELECT * FROM PEOPLE WHERE MAIL IS NOT NULL"
prepare="yes"
updatable="no"/>

</dbmodule>

6. GENERATING BINDINGS TO A DATABASE 34

function. Before returning, the main code does some cleanup by calling Database.disconnect
in order to close the implicit connection of the Database module.

35 Complete example

Code sample 14 Objective Caml source for example.

let driver = "org.apache.derby.jdbc.ClientDriver"

let url = "jdbc:derby://localhost:1527/nickel"

type people = < next : string * string * string * int32 option * string option;
close : unit >

let print_people (x : people) =
CadmiumJDBC.Iterators.iter_close

(fun (id, fname, lname, age, mail) ->
Printf.printf " %s -> %s %s (%s) %s\n"

id
fname
lname
(match age with Some x -> Int32.to_string x | None -> "-")
(match mail with Some x -> x | None -> "-"))

x

let () =
ignore (Cadmium.Class.for_name driver);
Database.connect url None None;
print_endline "People:";
print_people ((new Database.get_people None) :> people);
print_endline "People with mail:";
print_people ((new Database.get_people_with_mail None) :> people);
let rs = new Database.get_people None in
(try

while true do
match rs#next with
| (_, fname, lname, _, None) ->

rs#update_5 (Some (Printf.sprintf "%s.%s@unknown.org" fname lname))
| _ -> ()

done
with Not_found -> ());
ignore (Database.insert None (Some "BD") (Some "Baby") (Some "Doe") (Some 1l) None);
print_endline "People (updated):";
print_people ((new Database.get_people None) :> people);
Database.disconnect ()

	Introduction
	Building Nickel
	Running Nickel
	Command-line version
	GUI version
	Ant task

	Compiling generated files
	Generating bindings to classes
	Meta elements
	Class declarations
	Field declarations
	Constructor declarations
	Method declarations
	Wrappers
	Exceptions
	Complete example

	Generating bindings to a database
	Meta elements
	Prepared and unprepared statements
	Type mapping
	Command declarations
	Query declarations
	Complete example

